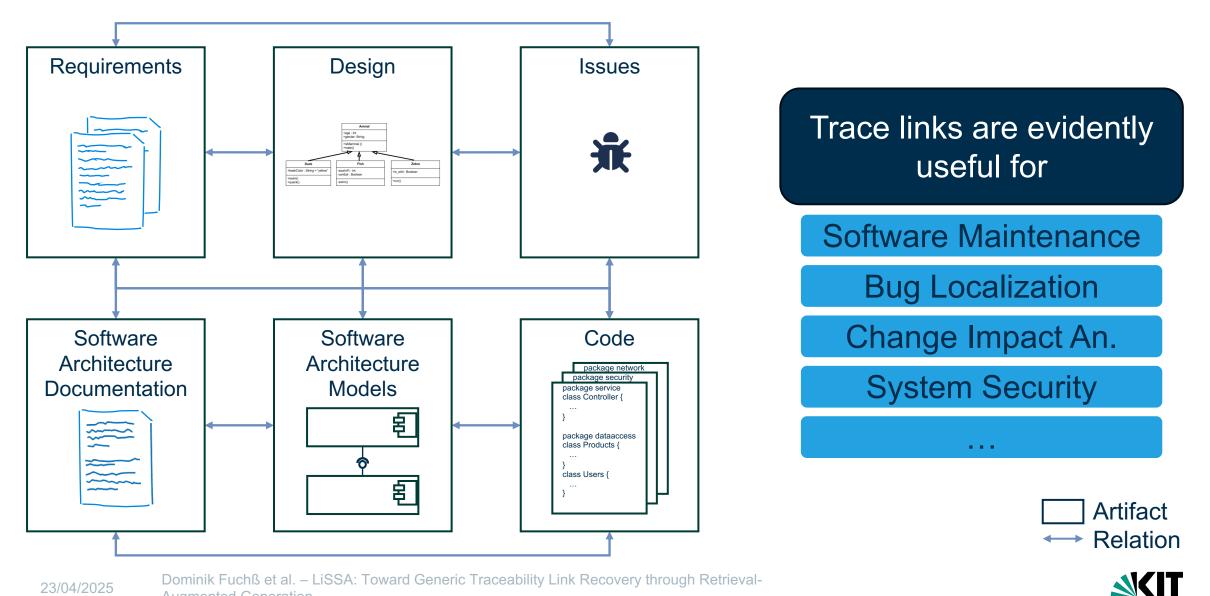
LiSSA: **Toward Generic Traceability Link Recovery through Retrieval-**Augmented Generation

Dominik Fuchß, Tobias Hey, Jan Keim, Haoyu Liu, Niklas Ewald, Tobias Thirolf, Anne Koziolek, KASTEL – Institute of Information Security and Dependability





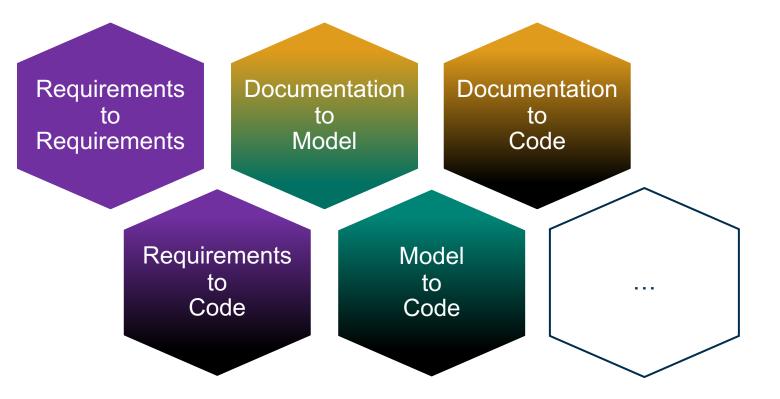
Dominik Fuchß et al. - LiSSA: Toward Generic Traceability Link Recovery through Retrieval-23/04/2025 Augmented Generation

- Multitude of different artifacts
- Typical TLR tasks:

. . .

- Requirements to Code
- Documentation to Code

Many specialized approaches





- Multitude of different artifacts
- Typical TLR tasks:

Do

. . .

Many

\_\_\_\_

- Requirements to Code



How does Retrieval-Augmented Generation perform for different TLR tasks?

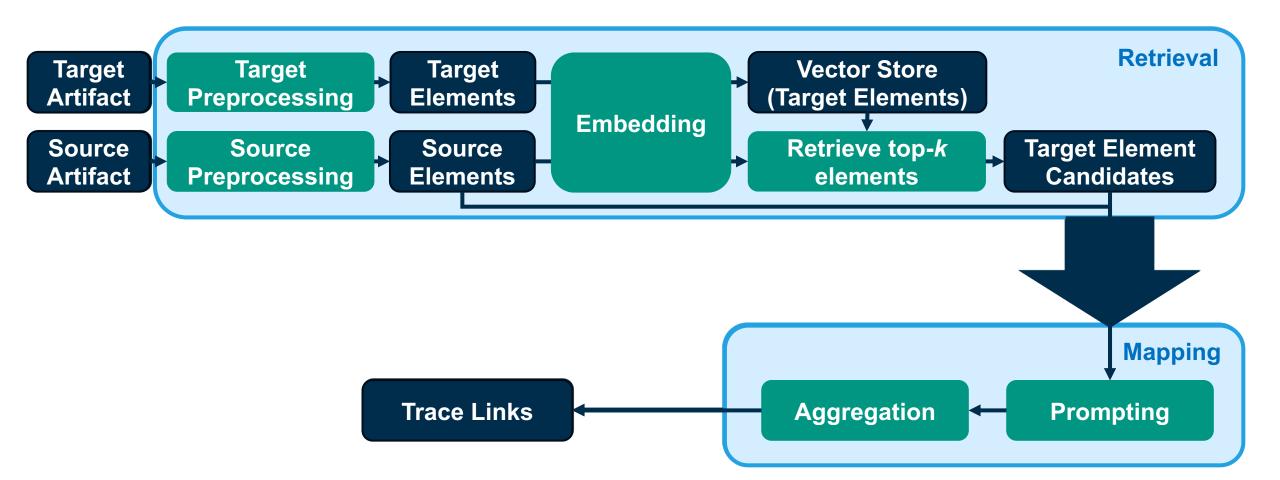














## **Evaluation**

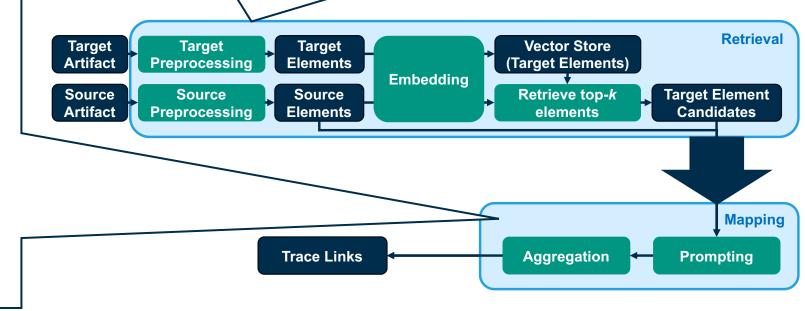
# **Prompting**: Classify whether elements belong to each other

- No prompt: Always classify as "trace link" → IR baseline
- KISS: Simple Yes/No-classification task (zero shot)
- Chain-of-thought: Zero shot prompt + request for reasoning

6

#### **Preprocessing**: Extract *elements* from *artifacts*

- No preprocessing
- Code chunking (fixed size)
- Code method splitting
- Model element extraction
- Sentence splitting





#### **Evaluation**

# Requirements to Code TLR

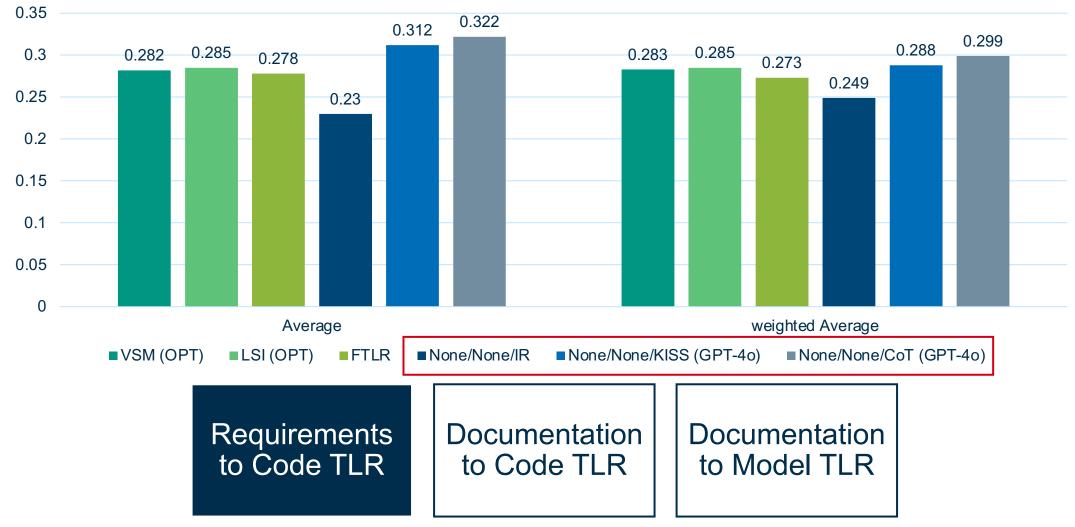
# Documentation to Code TLR

# Documentation to Model TLR





### **Evaluation: Requirements to Code**

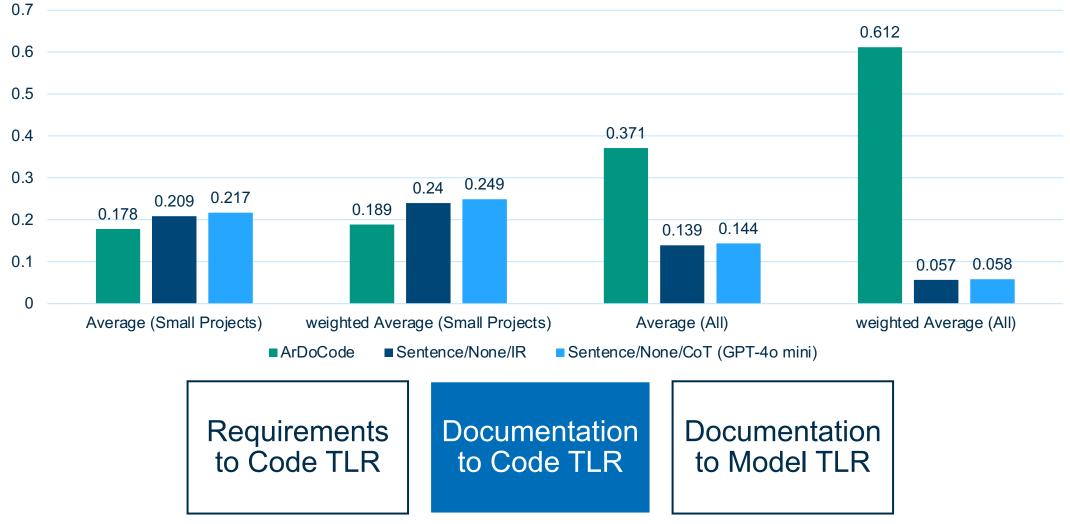


#### F1-score for Requirements to Code TLR



### **Evaluation: Documentation to Code**

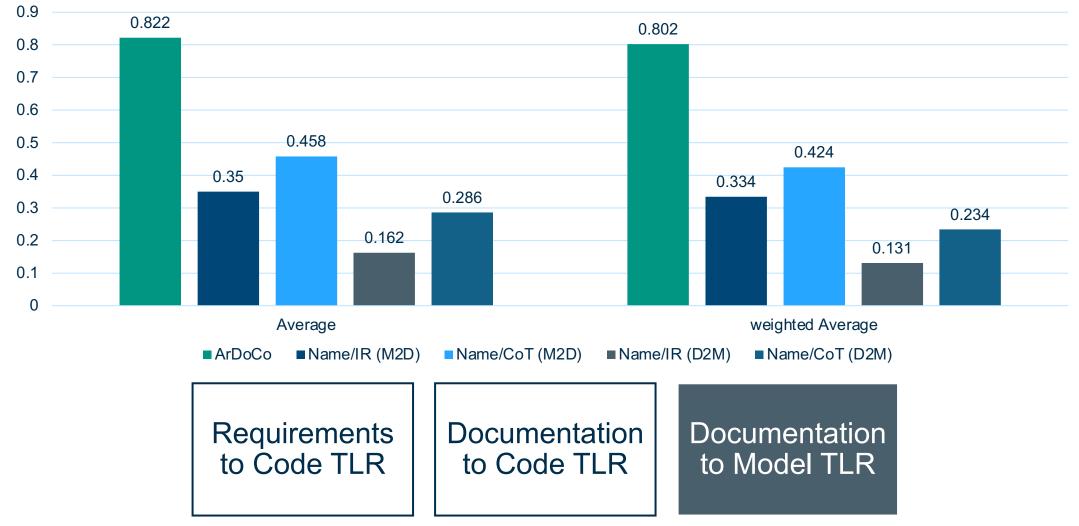
#### F1-score for Documentation to Code TLR





### **Evaluation: Documentation to Model**

#### F1-score for Documentation to Model TLR





#### Conclusion

- We presented LiSSA, a generic TLR framework that uses RAG
- In the evaluation,
  - Our approach can significantly outperform state-of-the-art for requirement to code TLR – avg. F1: 0.278 (FTLR) vs. 0.322 (GPT-40 + CoT)
  - Chain-of-thought (CoT) prompting was on average more effective than simple classification prompting
  - Artifact-to-artifact TLR was (on average) better than fine-grained mappings
- Outlook:

- Inter-requirements TLR with LiSSA (see <u>https://ardoco.de/c/refsq25</u>)
- Documentation to code TLR (see <u>https://ardoco.de/c/icsa25</u>)
- Definition of different kinds of "Trace Links"
- Revisit fine-grained mappings + advanced aggregation strategies
- Automatic prompt engineering



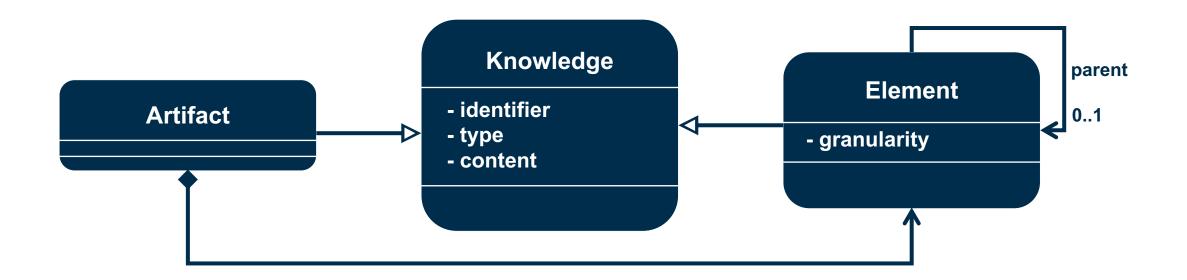


#### Backup



#### **LiSSA: Concepts**

- Similar treatment of similar artifacts
  - Code-like artifacts (e.g., source code, test code)
  - Natural language artifacts (e.g., requirements, documentation, issues)
  - Structural model artifacts (e.g., UML component models)

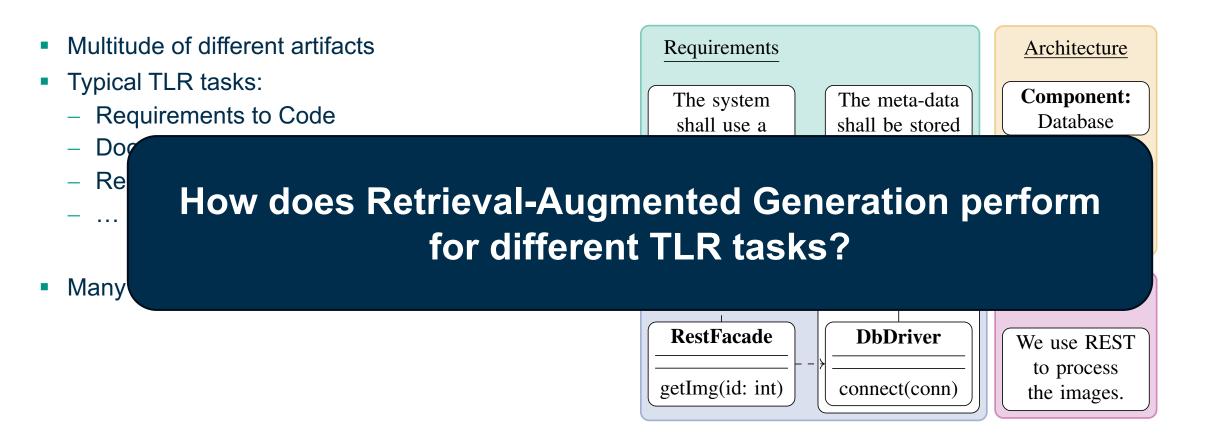




### **Research Questions**

- RQ1: Performance of RAG-based TLR compared to SotA
  - Significantly outperforming for requirements to code TLR
  - Documentation to Code: Better performance on smaller projects (less TLs)
  - Documentation to Architecture: No outperformance
- RQ2: Effectiveness of CoT prompting
  - CoT performs better than simple classification prompts
- RQ3: Preprocessing Techniques
  - On average, not benefitial to split artifacts
  - However, on some projects this helps a lot
- RQ4: Effects of classification step compared to IR-only
  - Classification improves TLR







#### **Evaluation: Requirements to Code (Datasets)**

| Dataset        | Domain     | NL | Programming  | Requirements | Code | TLs  |
|----------------|------------|----|--------------|--------------|------|------|
| SMOS           | Education  | IT | Java         | 67           | 100  | 1044 |
| eTour          | Tourism    | EN | Java         | 58           | 116  | 308  |
| iTrust         | Healthcare | EN | Java         | 131          | 226  | 286  |
| Dronology (RE) | Aerospace  | EN | Java, Python | 99           | 423  | 602  |
| Dronology (DD) | Aerospace  | EN | Java, Python | 211          | 423  | 740  |



## **Evaluation: Requirements to Code (GPT-40, F<sub>1</sub>-score)**

| Approach           | SMOS  | eTour | iTrust | Dronology (RE) | Dronology (DD) | Average | Weighted<br>Average |
|--------------------|-------|-------|--------|----------------|----------------|---------|---------------------|
| VSM <sub>OPT</sub> | 0.422 | 0.483 | 0.217  | 0.158          | 0.131          | 0.282   | 0.283               |
| LSI <sub>OPT</sub> | 0.422 | 0.453 | 0.253  | 0.162          | 0.135          | 0.285   | 0.285               |
| FTLR               | 0.389 | 0.474 | 0.222  | 0.172          | 0.140          | 0.278   | 0.273               |
| None/None/IR       | 0.366 | 0.342 | 0.105  | 0.196          | 0.144          | 0.230   | 0.249               |
| None/None/KISS     | 0.285 | 0.493 | 0.290  | 0.260          | 0.229          | 0.312   | 0.288               |
| None/None/CoT      | 0.294 | 0.526 | 0.276  | 0.273          | 0.241          | 0.322   | 0.299               |



#### **Prompts**

#### **Prompt: KISS**

Question: Here are two parts of software development artifacts.

{source\_type}: "'{source\_content}'''
{target\_type}: "'{target\_content}'''

Are they related? Answer with 'yes' or 'no'.

#### **Prompt: CoT**

Below are two artifacts from the same software system. Is there a traceability link between (1) and (2)? Give your reasoning and then answer with 'yes' or 'no' enclosed in <trace></trace>.

(1) {source\_type}: "'{source\_content}'''(2) {target\_type}: "'{target\_content}'''



## **Evaluation: Requirements to Code**



