Enabling ZZ SIT
Architecture ==

Traceability by
LLM-based
Architecture
Component Name
Extraction

Dominik Fuchfy, Haoyu Liu, Tobias Hey, Jan Keim, Anne
Koziolek, KASTEL - Institute of Information Security and
Dependability

What makes Trace Links important?

Requirements

A

mmmmmmmmm
44444

\ 4

a_vid Bockean
ot Bookean

nnn

Issues

-~

Software
Architecture
Documentation

Software
Architecture
Models

d
:

d

Trace links are evidently
useful for

Artifact

«<— Relation

KIT

Traceability Link Recovery between Documentation & Code

Software Architecture \
Documentation (SAD)

Code

package service
class Controller {

The controller receives
Incoming requests and

verifies them./

Then, it answers
requests by querying the

———

.-

package
class Products {

}

class Users {

}

KIT

Traceability Link Recovery between Documentation & Code

Software Architecture
Documentation (SAD)

The controller receives
Incoming requests and
verifies them.

Then, it answers
requests by querying the

AN

Software Architecture \

Model (SAM)

Controller

=

=

Code

package service
class Controller {

-

package
class Products {

}

class Users {

}

KIT

Traceability Link Recovery between Documentation & Code

Software Architecture

Software Architecture Code
Documentation (SAD Model (SAM) ‘a6 service
TransArC: Using Software Architecture Models as troller {

IR lICTlY intermediate artifact for Documentation to Code TLR

Incoming reque
verifies them.

Then, it answers
requests by querying the
persistence component.

significantly improves the TLR results

Keim et al.: Recovering Trace Links Between Software Documentation And Code, ACM/IEEE ICSE 2024 dataaccess

DataPersistence

=

2

class Products {

}

class Users {

}

KIT

Traceability Link Recovery between Documentation & Code

" Software Architecture Software Architecture Code
Documentation (SAD Model (SAM) ‘a6 service

TransArC: Using Software Architecture Models as troller {
ILUERYOIIISAL intermediate artifact for Documentation to Code TLR

incoming reque significantly improves the TLR results
verifies them.

Keim et al.: Recovering Trace Links Between Software Documentation And Code, ACM/IEEE ICSE 2024

oo 9 i class Products {

Then, it answerg

requests by que _ _
Can we trace between architecture documentation and

code without the need for manually created models? SRt

KIT

Traceability Link Recovery between Documentation & Code

I Software Architecture \
Documentation (SAD)

The controller receives

=

Simple

Software Architecture \

Model (SSAM)

Incoming requests and

Then, it answers
requests by querying the

_

/l Controller J/

-

/

>,

Code

package service
“class Controller {

-

package
class Products {

}

class Users {

}

KIT

Approach to get a Simple Software Architecture Model

-

Architecture
Documentation

Source Code

Feature
Extraction

Prompting
Strategies

Approach

Component
Names

Approach to get a Simple Software Architecture Model

Prompt: Documentation to Architecture

Your task is to identify the high-level
components based on the software
architecture documentation.

In a first step, you shall elaborate on the
following documentation:

{Software Architecture Documentation}

KIT

Eval: Component Names derived from Documentation

0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.1

()

F1-Score by Approach

0.74 0.76

0.82
III |

Average

0.37
0.28

. 0.16

0.87 p85 0.86

0.62
0.36
I 0.08
]

weighted Average

m RAG (GPT-40 mini) mTransArC

m CodeBERT (LLM) mArDoCode
m u GPT-40 mini 1 GPT-4o

m Codellama 13b mLlama 3.1 70b

F1-Score: Harmonic Mean of Precision and Recall

RQ 1: Comparable
to TransArC ?

RQ 2: Better than
SotA w/o SAMs?

RQ 3: Open-

Source vs. Closed-
Source LLMs?

KIT

Eval: Component Names derived from ...

RQ 1: Comparable
to TransArC ?

SSAM derived from ... Average F1 Weighted Average F1

RQ 2: Better than

Documentation 0.76 0.86
Code 0.58 0.81 SotA wio SAMs?
Both (Similarity Aggregation) 0.73 0.86

: RQ 3: Open-
Both (Prompt Aggregation) 0.72 0.85 Source vs. Closed-

Source LLMs?

RQ 4: Influence of
different artifacts
(i.e., Code/SAD)

F1-Score: Harmonic Mean of Precision and Recall

KIT

Conclusion

= We use LLMs to derive Simple Software Architecture Models
(Component Names) to support the TLR between Architecture
Documentation and Code

* |n the evaluation,
= Qur approach performs comparable to TransArC (best avg. F1: 0.76)

= Extraction based on documentation often performs better than only
code (best avg. F1: 0.76 vs. 0.58)

= Fusion (Doc + Code) can reach similar, but still less good results

= Qutlook:

= Prompt Optimization might be needed (e.g., dealing with “sub-
components” in the results)

= Analysis of the different meanings of “Trace Link”

co

¢®

S

ardoco.de/c/icsa25

KIT

Backup

Dominik FuchB et al. - Enabling Architecture Traceability by LLM-based Architecture ﬂ(IT

13 31/03/2025 Component Name Extraction

Traceability Link Recovery between Documentation & Code

Software Architecture AN Code
Documentation (SAD) package service
T class Controller {
The controller receives HOTMEHON BEHIEVE
iIncoming requests and }
verities them. Machine Learning package dataaccess

_ class Products {
Then, it answers

requests by querying the

| 4 N |
ersistence component.
P P Problem: The results of direct TLR class Users {
° approaches are not good enough.
N J 1}

KIT

Eval: Problems with LLM-extracted Simple Models

SAD-extracted Manual Code-extracted RQ 1: Comparable
Example: ‘ N (N \ :
. GPT4 Turbo ([Client H+ Client h—+ Client | fo TransArG ?
= TEAMMATES (GAE Datastorej
[Common j [Common } - -[CommonUtilities] RQ 2: Better than
" Fi-Score (2 W EE) SotA w/o SAMs?
= Documentation: 0.80 :
[TestDriver HH Test Driver } _|] TestingandQual-
= Code: 0.34 JT U ity Assurance
: N[. NI : RQ 3: Open-
[bogic jrp___teee jp_ Losic] Source vs. Closed-
[Storage J [Storage J [Storage] Source LLMs?
[Ul j [Ul }-{ UserlInterface]
Architectureand RQ 4: Influence of
MainEntryPoint different artifacts

’ (i.e., Code/SAD)

KIT

Eval: Setup

Artifact Type MediaStore TeaStore TEAMMATES BigBlueButton (BBB) JabRef
SAD #Sentences 37 43 198 85 13
SAM #Model Elements 23 19 16 24 6
Code #Files 97 205 832 547 1,979
SAD-Code #Trace Links 50 707 7,610 1,295 8,240

KIT

Eval: Component Names derived from Documentation (F1)

Approach MediaStore TeaStore TEAMMATES BBB Jabref Avg. w. Avg. RQ 1: Comparable
CodeBERT (LLM) 17 .36 12 12 .61 . . to TransArC ?
ArDoCode .09 .31 53 13 .80
RAG (GPT-40 mini) .08 .38 .06 24 .05
RQ 2: Better than
TransArC .68 .83 .80 .84 94 SotA w/o SAMs?
GPT-40 mini .50 .78 .80 .68 .94
GPT-40 .50 .79 .80 75 .94
Codellama 13b 63 79 56 08 94 |. . RQ 3: Open-
Source vs. Closed-
Llama 3.1 70b 49 .70 41 51 .94 : : Source LLMs?

F1-Score: Harmonic Mean of Precision and Recall

KIT

Eval: Component Names derived from Documentation (F1)

F1-Score by Project & Approach

RQ 1: Comparable
to TransArC ?

0.9
0.8

0.7

0.6

05

0.4

8.3 || | III | I | I I RQ 2: Better than
' SotA w/o SAMs?

0.1 ||| I I

()

MediaStore = TeaStore TEAMMATES JabRef Average weighted
Average
B CodeBERT (LLM) mArDoCode = RAG (GPT-40 mini) m TransArC RQ 3: Open:
o Source vs. Closed-
m GPT-40 mini mGPT4o0 m Codellama 13b mlLlama 3.1 70b

Source LLMs?

F1-Score: Harmonic Mean of Precision and Recall

KIT

Eval: Problems with LLM-extracted Simple Models

RQ 4: Influence of

= Code: 0.94

SAD-extracted Manual Code-extracted different artifacts
Example: [Cli] [oli] i.e., Code/SAD
= Llama 3.1 70b
« JabRef [globals]
: WA ; WA
[Gui il gui it GUI]
= Code: only “components” [Logic] [logic] [Logic]
shown; “sub-components”
didn’t affected the TLR task [Model] [model] [Model]
[Preferences] [preferences] [Preferences]
F1 score h
: [EventBus J [Networking]
= Documentation: 0.94 . .)

KIT

TransArC via LLM-extracted Component Names

Prompt: Documentation to Architecture

Your task is to identify the high-level components based on the software
architecture documentation.

In a first step, you shall elaborate on the following documentation:
{Software Architecture Documentation}

Prompt: Code to Architecture
You get the {Features} of a software project.

Your task is to summarize the {Features} w.r.t. the high-level architecture
of the system.

Try to identify possible components. {Features}: {Content} Doczggnnﬁgtion

to Architecture

Prompt: Code
to Architecture

Prompt: List
Creation

Prompt: List
Creation

Prompt:
Aggregation

KIT

