
KIT – The Research University in the Helmholtz Association www.kit.edu

Detecting Inconsistencies in Software Architecture
Documentation Using Traceability Link Recovery
Jan Keim, Sophie Corallo, Dominik Fuchß, Anne Koziolek

SE24 – Linz – 29.02.2024

Keim et al. - Detecting Inconsistencies in Software Architecture

Documentation Using Traceability Link Recovery

KASTEL – Institute of Information Security and Dependability

KIT Department of Informatics
29.02.20242

Software Architecture Documentation (SAD)

1) The system adheres to layered

architecture.

2) The Facade is the entry point to the

service.

3) It passes calls to the user

management.

4) The user management then

accesses the DB.

5) The Common component contains

utility functionality.

Keim et al. - Detecting Inconsistencies in Software Architecture

Documentation Using Traceability Link Recovery

KASTEL – Institute of Information Security and Dependability

KIT Department of Informatics
29.02.20243

Connecting SADs with Traceability Link Recovery

1) The system adheres to layered

architecture.

2) The Facade is the entry point to the

service.

3) It passes calls to the user

management.

4) The user management then

accesses the DB.

5) The Common component contains

utility functionality.

using the TLR approach SWATTR [Keim2021]

Keim et al. - Detecting Inconsistencies in Software Architecture

Documentation Using Traceability Link Recovery

KASTEL – Institute of Information Security and Dependability

KIT Department of Informatics
29.02.20244

Unmentioned Model Elements

1) The system adheres to layered

architecture.

2) The Facade is the entry point to the

service.

3) It passes calls to the user

management.

4) The user management then

accesses the DB.

5) The Common component contains

utility functionality.

The model has an element that is not documented in the text

Keim et al. - Detecting Inconsistencies in Software Architecture

Documentation Using Traceability Link Recovery

KASTEL – Institute of Information Security and Dependability

KIT Department of Informatics
29.02.20245

Missing Model Elements

1) The system adheres to layered

architecture.

2) The Facade is the entry point to the

service.

3) It passes calls to the user

management.

4) The user management then

accesses the DB.

5) The Common component contains

utility functionality.

The text has an element that is not modelled

Keim et al. - Detecting Inconsistencies in Software Architecture

Documentation Using Traceability Link Recovery

KASTEL – Institute of Information Security and Dependability

KIT Department of Informatics
29.02.20246

Research Questions & Contributions

1) To what extent do changes to the previous approach SWATTR improve the

performance for Traceability Link Recovery?

2) How does the approach perform for detecting unmentioned model elements?

3) How well does the approach detect missing model elements?

Contributions

1. Extending TLR and add capabilities to identify inconsistencies

2. Novel approach (ArDoCo) to identify inconsistencies

3. Replication package

Keim et al. - Detecting Inconsistencies in Software Architecture

Documentation Using Traceability Link Recovery

KASTEL – Institute of Information Security and Dependability

KIT Department of Informatics

Inconsistency Detection between API/Code documentation and Code,
e.g., Kim & Kim 2016

Inconsistency Detection for requirements,
e.g., Fantechi & Spinicci 2005, Kamalrudin et al. 2010

Inconsistency Detection for Software Architecture,
e.g., Lytra & Zdun 2014

No work looking at inconsistencies between
natural language software architecture documentations (NLSADs)

and software architecture models (SAMs)

29.02.20247

Related Work

Keim et al. - Detecting Inconsistencies in Software Architecture

Documentation Using Traceability Link Recovery

KASTEL – Institute of Information Security and Dependability

KIT Department of Informatics
29.02.20248

Background: SWATTR

Traceability Link Recovery

Text

Extraction

Element

Identification

Element

Connection

Model

Extraction

Trace Links

Architecture

Model

Architecture

Doc.

[Keim2021]

Keim et al. - Detecting Inconsistencies in Software Architecture

Documentation Using Traceability Link Recovery

KASTEL – Institute of Information Security and Dependability

KIT Department of Informatics

Inconsistency DetectionTraceability Link Recovery

29.02.20249

Our Approach

Text

Extraction

Element

Identification

Element

Connection

Model

Extraction
Filter

Inconsistency

Identification

Trace Links

Inconsistencies
Recommended

Instances

Architecture

Model

Architecture

Doc.

ArDoCo (Architecture Documentation Consistency)

Keim et al. - Detecting Inconsistencies in Software Architecture

Documentation Using Traceability Link Recovery

KASTEL – Institute of Information Security and Dependability

KIT Department of Informatics

Look for absent trace links for model elements (e.g., components)

Each model element needs to have at least one trace link

Configuration options to adjust to needs

Minimum number of needed trace links

Types of model elements that are checked (e.g., components, interfaces)

Regex-based whitelist

29.02.202411

Detecting Unmentioned Model Elements

Keim et al. - Detecting Inconsistencies in Software Architecture

Documentation Using Traceability Link Recovery

KASTEL – Institute of Information Security and Dependability

KIT Department of Informatics

Make use of Recommended Instances (RIs) of SWATTR

→ RIs without a trace link are (potential) inconsistencies

Problem: SWATTR detects many RIs to increase recall for TLR

Therefore, filtering RIs based on

(dynamic) threshold regarding overall confidence

confidence for name and type of the RI

Number of occurrences

Unwanted words: general and project/domain-specific blacklists

29.02.202412

Detecting Missing Model Elements

Keim et al. - Detecting Inconsistencies in Software Architecture

Documentation Using Traceability Link Recovery

KASTEL – Institute of Information Security and Dependability

KIT Department of Informatics

Project Language (kLOC) Forks Contributors

MediaStore (MS) Java 4 - -

TeaStore (TS) Java 12 0.1k ~ 15

TEAMMATES (TM)
Java 91

2.6k ~ 500
TypeScript 54

BigBlueButton (BBB)

JavaScript 69

5.8k ~ 180
JSX 47

Scala 22

Java 21

JabRef (JR) Java 157 2.0k ~ 490

29.02.202413

Evaluation Projects

Current and historic versions of documentation used

Keim et al. - Detecting Inconsistencies in Software Architecture

Documentation Using Traceability Link Recovery

KASTEL – Institute of Information Security and Dependability

KIT Department of Informatics

Goals

To measure how well we can link
sentences that mention a certain model
element to the model elements

To compare the results

Process

Comparison with gold standard

RQ1: To what extent do changes to

the previous approach SWATTR

improve the performance for TLR?

Metrics

Precision, Recall, F1 – Score

Accuracy, Specificity

Φ – Coefficient

Average, Weighted Average

29.02.202414

Evaluation: Traceability Link Recovery

Keim et al. - Detecting Inconsistencies in Software Architecture

Documentation Using Traceability Link Recovery

KASTEL – Institute of Information Security and Dependability

KIT Department of Informatics

Baseline Approach

Assumption: Elements that should be linked have equal or similar naming

Extracts n-grams for sentences and model elements (n = {1,2,3})

Compares n-grams from text and models using normalized Levenshtein distance

Create Trace Links if comparison shows (high) similarity

29.02.202416

Evaluation: Comparing TLR results

Approach Precision* Recall* F1-Score* Accuracy*

Baseline .80 .37 .50 .89

SWATTR .49 .63 .52 .94

ArDoCo .81 .81 .80 .98

* weighted Average

Keim et al. - Detecting Inconsistencies in Software Architecture

Documentation Using Traceability Link Recovery

KASTEL – Institute of Information Security and Dependability

KIT Department of Informatics

Goal

To measure how well we can detect
unmentioned model elements

Process

Comparison with gold standard

RQ2: How does the approach

perform for detecting unmentioned

model elements?

Metrics

Precision, Recall, F1 – Score

Accuracy, Specificity

Φ – Coefficient

Average, Weighted Average

29.02.202417

Evaluation: Inconsistency Detection - UMEs

Keim et al. - Detecting Inconsistencies in Software Architecture

Documentation Using Traceability Link Recovery

KASTEL – Institute of Information Security and Dependability

KIT Department of Informatics
29.02.202418

Evaluation: Inconsistency Detection - UMEs

Project # Elements Precision Recall F1-Score Accuracy

MS 4 .67 1.0 .80 .88

TS 6 5 1.0 1.0 .83 1.0 .91 1.0 .91 1.0

TM 1 1.0 1.0 1.0 1.0

BBB 4 1 .50 1.0 .75 1.0 .60 1.0 .73 1.0

JR 3 1 1.0 1.0 .67 1.0 .80 1.0 .83 1.0

w. Avg.
.86 .88 .79 1.0 .80 .93 .85 .95

.87 .88 .86 .90

Historic

Current

Keim et al. - Detecting Inconsistencies in Software Architecture

Documentation Using Traceability Link Recovery

KASTEL – Institute of Information Security and Dependability

KIT Department of Informatics

Goals

To measure how well the approach
detects missing model elements

To compare with a simple baseline

To measure the influence of filter lists

Process

Remove model elements to create
(artificial) inconsistencies

RQ3: How well does the approach

detect missing model elements?

Metrics

Precision, Recall, F1 – Score

Accuracy, Specificity

Φ – Coefficient

Average, Weighted Average

29.02.202419

Evaluation: Inconsistency Detection - MMEs

Keim et al. - Detecting Inconsistencies in Software Architecture

Documentation Using Traceability Link Recovery

KASTEL – Institute of Information Security and Dependability

KIT Department of Informatics
29.02.202420

Evaluation: Inconsistency Detection - MMEs

Project Precision Recall F1-Score Accuracy

MS .21 .79 .33 .70

TS .16 .96 .98 .70 .28 .79 .38 .96

TM .17 .18 .63 .76 .26 .28 .86 .85

BBB .09 .89 .18 .46 .11 .43 .81 .96

JR .22 1.0 .11 .44 .15 .44 .57 .85

w. Avg.
.14 .60 .47 .63 .19 .43 .71 .87

.39 .64 .34 .77

Historic

Current

Keim et al. - Detecting Inconsistencies in Software Architecture

Documentation Using Traceability Link Recovery

KASTEL – Institute of Information Security and Dependability

KIT Department of Informatics

Good results, some outliers

Outliers when text and model diverge too much → Low precision

Threats to Validity

Few open-source cases, unclear how well this generalizes

Artificial inconsistencies introduced when evaluating MME-detection

Benchmark dataset with potentially biased gold standards

29.02.202421

Discussion

Keim et al. - Detecting Inconsistencies in Software Architecture

Documentation Using Traceability Link Recovery

KASTEL – Institute of Information Security and Dependability

KIT Department of Informatics

Resources at ardoco.de/c/se24

We investigated automatic detection of inconsistencies in software
architecture documentation using trace links

We improved the approach for TLR and proposed an approach to
identify missing model elements and unmentioned model elements

We evaluated using five projects
TLR: F1-Score 0.81, Accuracy 0.98

ID – UMEs: F1-Score 0.89, Accuracy 0.93

ID – MMEs: F1-Score 0.39, Accuracy 0.77

Outperforming baselines

Needed Improvements & Future Work
Make use of relations and check their consistency

Experiment with deep learning/language models

29.02.202422

Conclusion

Keim et al. - Detecting Inconsistencies in Software Architecture

Documentation Using Traceability Link Recovery

KASTEL – Institute of Information Security and Dependability

KIT Department of Informatics

[Keim2021] J. Keim, S. Schulz, D. Fuchß, C. Kocher, J. Speit, and A. Koziolek, “Tracelink
recovery for software architecture documentation,” in Software Architecture, S. Biffl, E.
Navarro, W. Löwe, M. Sirjani, R. Mirandola, and D. Weyns, Eds. Springer International
Publishing, 2021, pp. 101–116.

[KimKim2021] S. Kim and D. Kim, “Automatic identifier inconsistency detection using code
dictionary,” Emp. Softw. Engg., vol. 21, no. 2, p. 565–604, 2016.

[FantechiSpinicci2005] A. Fantechi and E. Spinicci, “A content analysis technique for
inconsistency detection in software requirements documents.” 2005, pp. 245–256.

[Kamalrudin2010] M. Kamalrudin, J. Grundy, and J. Hosking, “Managing consistency
between textual requirements, abstract interactions and essential use cases,” in IEEE
Annual Computer Software and Applications Conference, 2010, pp. 327–336.

[LytraZdun2014] I. Lytra and U. Zdun, “Inconsistency management between architectural
decisions and designs using constraints and model fixes,” in 2014 23rd Australian Software
Engineering Conference, 2014, pp. 230–239.

29.02.202423

References

	Title
	Folie 1

	Motivation
	Folie 2: Software Architecture Documentation (SAD)
	Folie 3: Connecting SADs with Traceability Link Recovery
	Folie 4: Unmentioned Model Elements
	Folie 5: Missing Model Elements
	Folie 6: Research Questions & Contributions

	RW & Background
	Folie 7: Related Work
	Folie 8: Background: SWATTR

	Approach
	Folie 9: Our Approach
	Folie 11: Detecting Unmentioned Model Elements
	Folie 12: Detecting Missing Model Elements

	Evaluation & Discussion
	Folie 13: Evaluation Projects
	Folie 14: Evaluation: Traceability Link Recovery
	Folie 16: Evaluation: Comparing TLR results
	Folie 17: Evaluation: Inconsistency Detection - UMEs
	Folie 18: Evaluation: Inconsistency Detection - UMEs
	Folie 19: Evaluation: Inconsistency Detection - MMEs
	Folie 20: Evaluation: Inconsistency Detection - MMEs
	Folie 21: Discussion

	Conclusion
	Folie 22: Conclusion

	Appendix
	Folie 23: References

