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Abstract. Software Architecture Documentation often consists of dif-
ferent artifacts. On the one hand, there is informal textual documenta-
tion. On the other hand, there are formal models of the system. Finding
related information in multiple artifacts with different level of formal-
ity is often not easy. Therefore, trace links between these can help to
understand the system. In this paper, we propose an extendable, agent-
based framework for creating trace links between textual software ar-
chitecture documentation and models. Our framework SWATTR offers
different pipeline stages to extract text and model information, identify
elements in text, and connect these elements to model elements. In each
stage, multiple agents can be used to capture necessary information to
automatically create trace links. We evaluate the performance of our
approach with three case studies and compare our results to baseline
approaches. The results for our approach are good to excellent with a
weighted average F1-Score of 0.72 over all case studies. Moreover, our
approach outperforms the baseline approaches on non-weighted average
by at least 0.24 (weighted 0.31).

Keywords: Software Architecture Documentation · Trace Link Recov-
ery · Modeling · Natural Language Processing · Information Retrieval.

1 Introduction

The success of a software system is highly dependent on its architecture and
the architecture inhibits or enables many of the system’s quality attributes [1].
Software architecture defines early design decisions about a system’s remaining
development, its deployment, and its maintenance. Documenting the architec-
ture is important to capture necessary information for these tasks.

Software Architecture Documentation (SAD) is currently created in two fash-
ions. On the one hand, there are formal models of the system. Modeling systems
helps the architect to track changes in a software architecture and brings addi-
tional benefits like early evaluation and simulation to predict performance and
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other quality attributes [15]. On the other hand, there is informal SAD. In tex-
tual informal SAD, knowledge about the system including underlying design
decisions are captured. Both are key factors to understand a system and provide
essential insight.

However, combining information from both artifact types is challenging.
Finding information to a certain part of a system within informal documen-
tation is not always easy, especially in large-scale systems. Vice versa, finding
the model realizations from a part of the informal documentation can be time
consuming. Therefore, connecting different artifacts using trace links is useful.
For example, a part of the formal architecture model like a component changed.
As a consequence, you need to find and update information in the informal
documentation. However, a common occurrence is different naming in different
artifacts [21], therefore, simple search strategies (like string comparisons) do not
work. If no explicit trace links exist, identifying all locations that need to be up-
dated can be challenging and time consuming. Additionally, trace links can help
finding (in-) consistencies between artifacts, one of our long-term goals (cf. [6]).

In our work, we want to automate trace link recovery between informal tex-
tual documentation and formal models. Usually, automated trace link recovery
is done for requirements to code and, to the best of our knowledge, has not been
done for this case, yet. There are major differences in available information.
Compared to architectural models, source code contains more explicit informa-
tion, e.g., code comments and method bodies that can be used in information
retrieval (IR) and natural language understanding (NLU) approaches. As a re-
sult, many approaches cannot be applied easily and due to lack of information
will yield worse results. Therefore, we want to close this gap.

We propose the framework SoftWare Architecture Text Trace link Recovery
(SWATTR) for creating trace links between textual informal SAD and formal
models. Trace links are created between elements from different artifacts; for
example, in Figure 1, where the logic component is realized in the model and
mentioned within the text. Trace links are also created between elements where
naming is only similar but not exact like between database and SQL Datastore.
Within our approach, we use NLU and IR techniques to identify elements, match
these elements and create these trace links.

The SWATTR framework consists of different stages: Text and Model Extrac-
tion, Element Identification, and Element Connection. Each stage uses agents to
enable extensibility. This way, the framework supports adding further approaches
to improve NLU and the recovery of trace links. Furthermore, the framework can
be easily extended for further tasks (via additional stages) such as the previously
mentioned inconsistency identification.

As a result, our research question is: How accurately can we identify trace
links between textual informal SAD and models with our approach? With this
work, we make the following contributions: We present an approach for creating
trace links between textual informal SAD and formal models. The approach is
embedded in an extendable agent-based framework. We also provide our frame-
work, the results of our experiments, as well as a reproduction package online [7].
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Fig. 1. Textual mentions of architectural elements are collected. Then, they are linked
to their corresponding model elements.

2 Related Work

We closely relate to the automated trace link recovery community and the prob-
lem of connecting requirement documents to code.

For the task of recovering requirements-to-code trace links, there are many
approaches that are based on IR. These IR techniques dominated the trace
link recovery scene for more than a decade [2]. Recent approaches like the ap-
proach by Rodriguez and Carver [16] report good results by employing machine
learning techniques like evolutionary approaches. Rodriguez and Carver, for ex-
ample, combine two IR metrics and use the Non-dominated Sorting Genetic
Algorithm (NSGA-II) [3] to explore and find trace links. However, there are dif-
ferent problems regarding these IR approaches, including polysemy of words [20].
Moreover, underlying semantics are often disregarded.

Many more recent approaches try to understand and interpret the seman-
tics more thoroughly, using natural language processing (NLP) and NLU tech-
niques as well as deep learning. For example, Zhang et al. [22] use synonyms
and verb-object phrases. They combine these information with structural in-
formation to create a similarity score. This score is then used to recover trace
links. Guo et al. [4] use word embeddings and recurrent neural networks (RNNs),
Wang et al. tackle polysemy to resolve coreferences and find terms with identical
meanings [20]. These approaches often use only single measures, a shortcoming
that is approached by Moran et al. [12] with a Bayesian hierarchical network.
However, such approaches need lots of (training) data. Mills et al. try to face
this downside with an active learning approach [10].

Tang et al. present an approach that supports traceability between require-
ments and architecture design [19]. They define an ontology in which specifica-
tions and architectural artifacts can be defined manually. The latter are docu-
mented in a semantic wiki. Rempel and Mäder propose traceability metrics in
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the context of agile development to use graph-based metrics to link requirements
and test cases [14]. Building on that, Molenaar et al. propose their RE4SA ap-
proach that aims to align requirements and architecture [11]. More specifically,
RE4SA creates links between Epic Stories, User Stories, modules, and features.

All these approaches investigate some form of requirements-to-code trace link
recovery. However, our goal is to automatically create trace links between SAD
and models, which is a slightly different problem.

3 Our Approach

The main goal of our framework SWATTR is the creation of trace links between
entities of formal software architecture models and their textual informal archi-
tecture documentations. For this, we have different requirements: We want to
recover trace links between mentions of a model element in text to the corre-
sponding counterpart in the model(s) (see also Figure 1). The trace link recovery
should be resilient enough to cover slightly different naming, as this is a common
occurrence [21]. The framework should base on a very generic metamodel to be
independent of specific ones. With this, it can be applied on different kinds of
models. Additionally, the framework should have a modular design to enable easy
extension. All used mechanisms should be exchangeable or configurable to adapt
the framework dynamically based on given contexts. Lastly, we focus, for this
paper, on the creation of trace links between text elements and, on the model
side, entities like components. This means, we disregard trace links that may
link to relations between components, but plan to include such in the future.

Text Extraction

Model Extraction

Element  
Identification

Element  
Connection

Architecture 
Model

Architecture
Documentation

Trace
Links

Fig. 2. The core framework consists of multiple sequential steps.

As a result, our framework SWATTR has multiple execution steps (see Fig-
ure 2) that execute different agents. The different steps are the following: NLP
Pre-Processing, Text Extraction, Model Extraction, Element Identification, El-
ement Connection. At first, the text is analyzed with NLP techniques. This
includes, among others, part-of-speech (POS) tagging, sentence splitting, lem-
matizing, and dependency parsing. Based on this, the Text Extraction runs to ex-
tract relevant information from the architecture documentation. Simultaneously,
theModel Extraction extracts model elements from the architecture model. After
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both extraction steps, the Element Identification uses the extracted information
from text and metamodel to identify potential elements in the text. Here, we
focus on metamodel information to maintain the possibility to also identify archi-
tectural elements in the text that do not occur in the model. Lastly, the Element
Connection connects identified elements in the text with their counterpart in
the model and, thus, creates trace links.

Each step is a module that runs selected analyses. The analyses, as well as
their order, are determined by configurations and can be adapted flexibly. Each
analysis writes its result in a state that is held by the module, following the
blackboard design pattern (cf. [9]). Additionally, every (incoming) information
is associated with a confidence, so following steps can use this information.

Consequently, this design only expands promising results (dependent on the
analyses) in each subsequent step. Therefore, it is important to explore many
possibilities and to not discard viable solutions too early to maintain a high
recall, especially in early steps such as the text extraction step. If mentions are
wrongly discarded, they will not be considered for trace links. Therefore, we keep
less likely options early and each step analyses and filters out very unlikely ones.

With all these measures, we try to ensure good precision and good recall.
Overall, this design leads to a modular, extendable, and exchangeable frame-

work. In the following, we detail each of the steps within our framework.

1..2 1

1

TraceLink

confidence

Mention

terms
text_positions
name_confidence
type_confidence
nort_confidence

TextualElement

confidence

ModelElement

name
type
uuid

Fig. 3. Model of trace links in our approach

Extracting Text Information After initial pre-processing with NLP tech-
niques, the text is analyzed for potential mentions. The goal of this processing
step is to find out which words or compound terms denote named elements or
types of elements (e.g., component). The mentions (cf. Figure 3) are collected in
the text extraction’s state. Each mention has a confidence for each classification.

Strictly looking at names and types might diminish the performance of suc-
ceeding steps, restricting the chance to identify trace links. To approach this
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problem, our classification approach is more lenient and also classifies mentions
that could be either, a name or type (short: nort). Since the category nort is
more generic, not distinct from the others, and ambiguous, name and type clas-
sifications are preferred in later steps.

For example, if an analysis classified with a 70% confidence that database is
a nort and another analysis classifies that the term is with 20% confidence a
name, the module still prefers the latter as names are more specific than norts.
To ease the handling of different results, mentions also point to their most likely
classification. The confidences are saved within the mention and can be used in
succeeding steps, for instance, to overrule the classification.

Apart from the classification of mentions, the text extraction step clusters
terms based on their word similarity. The underlying assumption here is con-
sistent naming, thus same or similar names within the documentation are used
for the same model elements. Thereby, database and datastore might occur as
one entity. A similarity threshold is used to allow case-based fine-tuning for this
clustering and can optionally be turned off to disable this behavior altogether.

The following enumeration describes the various analyses and heuristics that
we use in this step:

Nouns – Extracts all nouns of the text and classifies them as name-or-type.
If a noun occurs in plural, the noun is classified as type.
Incoming Dependencies – Examines the incoming dependencies (obtained
by the dependency parser) of a word to classify it as name, type, or nort.
Outgoing Dependencies – Examines the outgoing dependencies of a word.
Sources of agent and relative clause modifier dependencies are classified as
norts, numeric modifier and predeterminer dependencies as type.
Pattern search – Searches for the pattern article-type-name in the text. If
a nort follows an article-name combination, the nort is classified as type. If
an article-nort-type pattern appears, the nort is classified as name.
Separators – Searches for terms that contain separators (e.g. “-”). The parts
as well as the term as a whole are added to the mentions.
Compound Terms – Searches for name and type mentions. If a nort that
is not yet classified as type is followed by a name, a new mention of the
compound terms is created. The type detection works analogously.

Extracting Model Information The model extraction step retrieves instances
from the model and saves their name, their type, and a uniquely traceable iden-
tifier (see Figure 3). These attributes can be seen as a generic definition of a
model element that our approach builds upon. Exchangeable adapters can ex-
tract needed information from different metamodels and transform them into
our model element definition. Right now, these attributes are sufficient for the
cases we encountered. If necessary, this definition can also be extended.

The applications in our evaluation (cf. Section 4) use Palladio Component
Models (PCM)[15] as architecture models. To read in models, we first transform
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them into an ontology using our Ecore2OWL tool4. We choose the ontology
approach here because we plan to unify the extraction for different metamodels
and we plan to extend (pre-) processing with the help of ontologies in future work.
An adapter reads in the provided ontology of a PCM and extracts information to
create internal representations of model elements. Additional adapters for other
metamodels can be implemented similarly.

As an illustration, a PCM contains the basic component sql datastore. The
model extractor retrieves its name, its type, and its ID using the PCM adapter.
Thereby, the internal model element has the name sql datastore and the type
basic component along with its id.

Identifying Elements This step uses types derived by the model extraction
step and mentions from the text extraction step to identify possible elements out
of mentions (from text) that should occur in the architecture model. The analyses
of this step are independent from the actual model but can use metamodel
information. This step also combines different identified mentions (see Figure 3)
to combine names and types.

Take following sentence as example: “The logic entity gets its data from
the database component”. Here, the text extractor classifies database as name
and component as type and both mentions are combined. The model extractor
provides the information that there is the type basic component. In this case, the
similarity between component and basic component is close enough to identify the
database component as potential element. Additionally, the datastore component
is in the same cluster and, thus, is treated the same.

We use two analyses here: One builds an element whenever a nort-type or
type-nort pattern occurs. The other one creates elements out of compound terms.
We additionally add a copy of each element in a name-type combination con-
taining only its name to avoid errors due to wrongly combined names and types.
This is in line with our paradigm to keep less likely but still valid options.

Because of its independence from the actual model, the results of this step
can also be used in future work within an inconsistency analysis to identify
elements that are mentioned in text but are missing in the model.

Connecting Elements & Creating Trace Links In this last step, trace links
are created. Here, information from textual processing as well as model process-
ing are combined. We compare elements built out of textual mentions on one side
and elements that have been extracted from a model on the other side. There are
various agents that contribute to this comparison and an overall confidence for
similarity is calculated. Hereby, textual elements and model instances are linked
using the terms of the underlying mentions (cf. Figure 3).

A trace link is created when the comparison results in a high enough con-
fidence (cf. Figure 3). Trace links that do not have enough confidence are dis-
carded. Again, the minimum confidence level can be configured. Similar to pre-
vious steps, we annotate the confidence of the analysis.
4 https://github.com/kit-sdq/Ecore2OWL

https://github.com/kit-sdq/Ecore2OWL
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For example, previous steps of the approach have identified database com-
ponent as an potential element and the database mention is clustered together
with the datastore. Moreover, the model extractor retrieved a model element
with the name sql datastore and the type basic component. Depending on the
similarity settings, this step links the potential element to the actual model el-
ement. Thereby, all clustered occurrences of database and datastore in the text
are linked to the basic component sql datastore in the model.

4 Evaluation

In this evaluation, we quantify the performance of our framework and answer our
research question: How accurately can we identify trace links between textual
SAD and models with our approach? To answer this question, we created gold
standards as described in Section 4.1 for multiple case studies. We use different
metrics to measure the performance; we describe these metrics in Section 4.2.
Finally, we examine the results and compare them to the results of baseline
approaches (see Section 4.3).

4.1 Gold Standards

To achieve our evaluation goal, the gold standard declares trace links, each con-
sisting of the ID of a sentence in the documentation and the ID of the cor-
responding model element. The focus here is to have trace links when model
elements are mentioned.

We use several case studies to compare the quality of our approach to others
and we created a gold standard for each case study. The first case study is
Mediastore [18], a Java EE based case study representing a (fictional) digital
store to buy and download music. The second case study is TeaStore [8], a
micro-service reference application representing a web store for tea. The third
case study is Teammates [13], a platform for managing peer evaluations and
other feedback for students.

For each of these case studies, we use existing software architecture docu-
mentation. We first remove all figures and images. We also remove semicolons to
have clear separations between sentences. We use consecutive sentence numbers
as ID for the textual documentation.

For all but Teammates, there was an existing Palladio model5. For Team-
mates, we reverse engineered a repository model from the code and from figures
of the architecture overview from the documentation. Although the figures are
close to the documentation text, there are still differences, e.g., in naming. This
makes the trace link recovery problem harder and is also more realistic.

We created a trace link between a sentence and a model element if the element
was mentioned in the sentence. This also includes coreferences such as “it”. Each
5 See https://sdqweb.ipd.kit.edu/wiki/Media_Store and https://github.com/
ArDoCo/CaseStudies/tree/master/TeaStore

https://sdqweb.ipd.kit.edu/wiki/Media_Store
https://github.com/ArDoCo/CaseStudies/tree/master/TeaStore
https://github.com/ArDoCo/CaseStudies/tree/master/TeaStore
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gold standard was created by multiple authors, disagreements were discussed
and resolved. One sentence can contain multiple mentions of model elements,
therefore, multiple trace links per sentence can exist.

Table 1 gives an overview of the different case studies regarding their text size,
number of model elements that are considered for trace links and number of trace
links that are expected. Mediastore and TeaStore are both dense descriptions of
the architecture with a comparably high number of trace links per sentence.
Teammates is more extensive with many explanations and sentences that do not
classify as a trace link.

#Sen. #TraceLinks #ModelElem. MaxTLperSen. #Sen.w/oTL

Mediastore 37 25 14 2 13
TeaStore 43 25 13 2 22
Teammates 198 80 8 7 131

Table 1. Used case studies with their number of sentences (#Sen.), trace links
(#TraceLinks), model elements (#ModelElem.), the max. number of trace links per
sentence (MaxTLperSen.) & the number of sentences w/o trace links (#Sen.w/oTL)

4.2 Metrics

To quantify the results of the approaches, we use the metrics precision, recall,
and F1-Score. For this, we look at the created trace links of the approach and
compare them to our gold standards. For a certain trace link, the referenced
sentence id and model id must match to form a true positive case. If there is no
trace link created by the approach but the gold standard expects one, we count
it as false negative. If a trace link is created that is not in the gold standard,
we count it as false positive. This also means, for example, if only a trace link
is created between sentence 3 and the logic component (see Figure 1) but the
gold standard expected the sql datastore component, then we have both, a false
positive as the link does not exist in the gold standard and a false negative
because an expected link is not present.

For trace link recovery in general, recall is seen as more important than
precision. According to Hayes et al. [5], analysts are better at detecting false
trace links than finding omitted ones. So, a result with higher recall and lower
precision is preferable to one with higher precision and lower recall. However,
precision has still to be regarded as the additional work for discarding false
positives diminishes some of the benefits of automated trace link recovery.

4.3 Results of SWATTR

Different configurations can have a big influence on the results of our approach.
We identified the threshold that determines when mentions are clustered (see
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Fig. 4. Evolution of precision and recall in dependence of the similarity configuration
for the clustering algorithm for Mediastore(MS), Teammates(TM), and TeaStore(TS)

Section 3) as the biggest influence factor. Therefore, we examine the performance
of our approach using different thresholds. To examine the influence, we varied
the threshold from 0.5 to 1.0 in steps of 0.05. The results are shown in Figure 4.

Our experiments show that recall increases with higher clustering thresholds.
If the threshold is set too low, many less similar terms are clustered in few
mentions. The reference terms of these mentions might not be similar enough
to the names of the model elements. Thereby, trace links are not found and the
recall is low. A high threshold above 0.95 results in the best recall.

Looking into the precision, best results can be achieved with threshold values
between 0.8 and 0.9. With a low threshold value, many dissimilar terms are
collected in a mention. This results in many incorrectly created tracelinks. If
the threshold is set too high, slight differences of mentions (e.g. database and
datastore) are not treated as similar anymore.

The influence of the threshold on the F1-Score can be seen in Figure 5.
Best results are achieved with thresholds between 0.8 and 0.95. The maximum
F1-Scores are 0.73 for TeaStore and 0.78 for Teammates. The performance for
Mediastore is slightly worse with a F1-Score of 0.53 at the best configuration.

According to Hayes et al. [5], the recall for TeaStore and Teammates are
excellent and for Mediastore still acceptable. Precision values are good for Me-
diastore and excellent for TeaStore and Teammates. On average, recall values
can be classified as good on the edge to excellent, precision values as excellent.
For weighted average, the results can be classified as excellent.

We also looked at the source of errors in case of the best configuration. In
the TeaStore case study, model elements, such as image component, have similar
naming to general terms that were used in the text (e.g., images). This kind
of mistake causes 46% of the false negatives. Regarding MediaStore, multiple
mentions contain names of other model elements because of their similarity (e.g.
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MediaManagement and UserManagement). Thus, every found trace link of these
mentions adds at least one false positive to the result. This problem causes 69%
of the false positives for this case study. Two more issues can be found in the
Teammates case study. Since Teammates has a GAE Database but often refers
to the component as well as other parts of the service as GAE the term is hard
to distinguish. Additionally, short terms like GAE or Client can easily be too
similar to other terms. The first failure causes 47% of the false positives, the
latter 25%. Over all case studies, 57% of false negatives are caused by trace
links that are not created due to incorrectly low similarity values. These results
indicate that we should refine clustering in the future. We also need to refine
our similarity calculation, especially for shorter terms.
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0.5

1

Similarity for Clustering

F
1
-S
co
re

MediaStore
Teammates
TeaStore

Fig. 5. Evolution of F1-Score in dependence of the similarity configuration for the
clustering algorithm for Mediastore, Teammates, and TeaStore

4.4 Comparison to other approaches

To compare our results with other approaches, we re-implemented the approaches
by Rodriguez and Carver [16] and Zhang et al. [22]. We choose these approaches
because they promise good (state-of-the-art) results. The second major benefit
is that these approaches can be adapted to our trace link recovery problem with-
out major problems; most needed information is still present when using models
instead of code. In the following, we outline the approaches and our adaptations.

The approach as described by Rodriguez and Carver [16] uses Jaccard simi-
larity and weighted cosine similarity and considers the trace link recovery prob-
lem as an optimization problem between these two metrics. They use the Non-
dominated Sorting Genetic Algorithm (NSGA-II) [3] and create a population
consisting of potential trace links, starting with random pairings. In each itera-
tion, a new population is generated out of the best candidates from the previous
population. Best candidates are kept and the rest of the population is created us-
ing mutation and crossover operators. As a result, the approach is highly reliant
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on specific configuration settings and randomness for its evolutionary aspect.
We see this as a general problem of the approach, as the best configuration and
best run cannot be predicted. We can mostly re-use the approach. The sole dif-
ference here is the reduced amount of text for the model side compared to code.
Therefore, we expect the approach to perform worse compared to the original
requirements trace link recovery problem. To cover the random factor of the
approach and to identify the maximum performance of the approach, we run
experiments 10 times and only select best results. Thus, results will be worse
when applying this approach in a non-experimental setting.

For the second baseline approach by Zhang et al. [22], we have to adapt
the described approach a little more. The approach uses synonyms, verb-object
phrases, and structural information to calculate the similarity between require-
ments and source code. The similarity is calculated using a vector space model
where the vector consists of weights for distinct words and phrases. The weights
themselves are calculated based on term frequency and inverse document fre-
quency. The terms are extracted using verb-object phrases in requirements and
code and are unified by resolving synonyms. When terms on both sides are sim-
ilar, a trace link is created. In contrast to the original approach, we have to
adapt the verb-object phrase extraction for models and add a threshold for sim-
ilarity to improve the precision. This worsens the recall slightly, so we run the
approach with different threshold values and only select the best run according
to the F1-Score.

The results of our experiments for each case study are listed in Table 2. Ad-
ditionally, we report two different average values. The first is the average that is
calculated on the precision and recall values of the three case studies. The second
one, weighted average, is the average that weights the results with the number
of trace links that a case study contains. We report both values because there
are slightly different semantics within these metrics. The non-weighted average
mainly portraits the expected outcome for a project. The weighted average re-
flects the expected outcome for trace links. For example, a project with lower
scores but only a small number of trace links does not affect the weighted av-
erage as much. However, both metrics have some bias. As the F1-Score is the
harmonic mean of precision and recall, we calculate the score out of the values
for precision and recall, also for the average cases.

Mediastore TeaStore Teammates Average w. Avg.

Approach P R F1

.47 .60 .53

.07 .32 .12
.76 .52 .62

P R F1

.63 .88 .73
.10 .20 .13
.35 .28 .31

P R F1

.69 .89 .78
.10 .15 .12
.49 .30 .37

P R F1

.60 .79 .68
.09 .22 .13
.53 .37 .44

P R F1

.64 .83 .72
.10 .19 .13
.52 .34 .41

SWATTR
Rodriguez & C.
Zhang et al.

Table 2. Results of trace link recovery for the three case studies and on average (in-
cluding weighted average) with comparison to baseline approaches using Precision (P),
Recall (R), and F1-Score (F1).
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Overall, SWATTR outperforms the other approaches in the case studies Tea-
Store and Teammates. Moreover, our framework has better results on average,
both weighted and non-weighted. Only in the Mediastore case study, the ap-
proach by Zhang et al. slightly outperforms our approach, mostly due to the
comparably high precision of their approach for this case study. As mentioned
earlier, some model elements are very similar and more direct string comparison
metrics without clustering as used by Zhang et al. can perform better here.

5 Discussion and Threats to Validity

Our approach brings a few limitations that are based on current design decisions
and assumptions that we made. Currently, our approach is dependent on word-
based similarity. Although there are different metrics to calculate word similarity
that could be exchanged, there are still few problems: First, if one word is not
recognized as similar enough to its modeled counterpart, all of its mentions in the
text are ignored. This obviously has a big impact on the performance, especially
recall, of our approach. Second, our approach does not differentiate different
contexts of mentions yet, which might affect its precision. This limitation is also
based on our aforementioned assumption that naming is consistent.

Our framework achieves promising results. Still, there are currently rather
simple agents and heuristics in this prototype and further improvements need
to be made. However, it is highly questionable, how much impact better and
more complex agents will have, given the good results. We want to analyze the
structure and properties of documentation more in depth, especially in relation
to other models. This way, we want to directly tackle found properties that our
approach does not address yet. We also disregard information about relations to
trace relations and to find further trace links.

For most parts, the case studies in investigation use similar naming in mod-
els and documentation. Therefore, approaches that consider naming and accept
slight differences can yield quite good results already. The baseline approach
by Rodriguez and Carver (cf. [16]) uses such metrics, but is is affected by ran-
domness and, thus, luck. The baseline approach by Zhang et al. (cf. [22]) also
performs better when same or very similar terms are used.

In the following, we discuss the threats to validity based on the guidelines
for case study research in software engineering by Runeson and Höst [17].

Construct Validity We applied commonly in the trace link recovery community
used experimental designs and metrics to mitigate potential risks regarding the
construct validity. However, there might be a certain bias in the selection of the
use cases. We used three case studies that have different project size as well
as documentation and model size. We selected different kinds of case studies
with different architecture styles and patterns. This way, we believe to have
reduced the bias and have a representative selection to ensure construct validity.
However, these were publicly available open source systems; documentation and
models of other or non-open-source projects might differ. Moreover, we only
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looked at component-based architecture models, which might induce bias in
our experimental design. In future work, we will extend our approach and our
experiments to further architecture description languages to avoid this.

Internal Validity In our case studies, we analyzed the provided documentation
texts and compared it to models to create trace links. This assumes that both ar-
tifacts contain the same consistent information. Consequentially, this disregards
inconsistencies between the different artifacts and further inabilities to properly
map the documentation to the models. This also disregards that the abstraction
level of the artifacts might be vastly different, thus a linking is less useful or
applicable. We countered this factor by selecting case studies where the mod-
els and the documentation have similar abstraction and are well mappable for
humans. This reduces the probability that other factors affect the investigation.

External Validity In our evaluation, we examined three different case studies.
Two of which originate from research. Teammates is used in practice, but also
originates from a university context. With these three case studies, we risk that
not all aspects and facets of the trace link recovery problem for SAD are cov-
ered. We carefully chose the cases studies, but documentation might differ for
other projects or organizations and therefore our results might differ as well.
One property of these case studies is that the naming within the textual docu-
mentation is close to the naming in the models. This should be the ideal case,
but inconsistent language and naming is one of the main types of inconsistencies
that practitioners encounter in practice [21]. In our datasets, there is slightly
inconsistent naming present, but it is unclear how representative this is overall.

Reliability For our experiments, we had to derive a gold standard for trace links
in these projects ourselves. Multiple researchers each created independently a
gold standard for our case studies. These gold standards where combined and
the few occurring differences were discussed. This way, we tried to minimize a
bias from a single researcher. However, there still can be a certain bias.

6 Conclusion and Future Work

Trace links between textual software architecture documentation and architec-
tural models are important for tracing (in-) consistency or tracking changes.
However, recovering these trace links to connect the different artifacts is not
trivial and has, to the best of our knowledge, not been done, yet. In this paper,
we presented the framework SWATTR for recovering trace links between these
artifacts. The framework consists of multiple execution steps: Finding mentions
in text, loading and analyzing provided models, identifying textual elements for
potential trace links, and finally creating the actual trace links. In each step,
there are different agents to provide different required analyses. This approach
also allows us to flexibly add further analysis methods.

We evaluated our approach using three case studies for which we created gold
standards. We calculated precision, recall, and F1-Score for each approach. Here,
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our approach achieves an average F1-Score of 0.68 (weighted 0.72) outperforming
the other approaches. The average F1-Score is 0.24 (weighted 0.31) higher than
the next best baseline approach. The results of our approach are overall good to
excellent according to the classification schema of Hayes et al. [5].

To overcome the identified limitations and to improve the performance of
our approach, we plan to add more analyses in every step. With more specific
analyses, precision as well as the recall could be increased. Especially in case of
mentions, a context based disambiguation could be helpful.

We also want to look more deeply into considering and tracing relations. This
can be useful, for example, to find where and how exactly the relation between
two components is realized. Moreover, relations could ease the identification of
trace links or help with verifying found ones.

Moreover, we want to extend our framework and combine it with other ap-
proaches. This way, we hope to improve the overall results. The most difficult
research question in this regard is how to combine or select results. One basic
strategy for this is to use results with most support, for example because two
out of three approaches created a certain trace link. However, we also want to
explore whether there are other combination strategies that can improve the
overall performance of our framework.

Lastly, we want to use our framework to recognize inconsistencies between
text and model. A low hanging fruit here is to classify elements in the text that
could not be connected to the model as potential inconsistency.
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